With CAD models that the team is making available to the public, objects can be created from commercially available plastics that can wirelessly communicate with other smart devices.
“Our goal was to create something that just comes out of your 3D printer at home and can send useful information to other devices,” said UW researcher Vikram Iyer. “But the big challenge is how do you communicate wirelessly with Wi-Fi using only plastic? That's something that no one has been able to do before.”
To 3D print objects that can communicate with commercial Wi-Fi receivers, the team employed backscatter techniques that allow devices to exchange information. In this case, the team replaced some functions normally performed by electrical components with mechanical motion activated by springs, gears, switches and other parts that can be 3D printed.
Backscatter systems use an antenna to transmit data by reflecting radio signals emitted by a Wi-Fi router or other device. Information embedded in those reflected patterns can be decoded by a Wi-Fi receiver. In this case, the antenna is contained in a 3D printed object made of conductive printing filament that mixes plastic with copper.
Physical motion – pushing a button, turning a knob, removing a tool from a weighted tool bench – triggers gears and springs elsewhere in the 3D printed object that cause a conductive switch to intermittently connect or disconnect with the antenna and change its reflective state. Information is encoded by the presence or absence of the tooth on a gear. Energy from a coiled spring drives the gear system, and the width and pattern of gear teeth control how long the backscatter switch contacts the antenna, creating patterns of reflected signals that can be decoded by a Wi-Fi receiver.
“As you pour detergent out of a bottle, for instance, the speed at which the gears are turning tells you how much soap is flowing out. The interaction between the 3D printed switch and antenna wirelessly transmits that data,” explained professor Shyam Gollakota. “Then the receiver can track how much detergent you have left and when it dips below a certain amount, it can automatically send a message to your Amazon app to order more.”
The team from the UW Networks & Mobile Systems Lab 3D printed several different tools that sense and send information successfully to other connected devices: a wind meter, a water flow meter and a scale.
They also 3D printed Wi-Fi input widgets such as buttons, knobs and sliders that can be customised to communicate with other smart devices in the home and enable an ecosystem of ‘talking objects’ that can seamlessly sense and interact with their surroundings.
Using a different type of 3D printing filament that combines plastic with iron, the team also leveraged magnetic properties to invisibly encode static information in 3D printed objects – which could range from barcode identification for inventory purposes or information about the object that tells a robot how to interact with it.