The lifetime of a thermal barrier coating used on airplane turbine blades can range from 1,000 hours up to 10,000 hours at full turbine thrust, even when the coating is applied in the exact same way. Because the lifetime is unpredictable and failure during flight could be catastrophic, turbine blades are scheduled for replacement based on the shortest estimated lifetime.
“Our strain-measurement technique can analyse the coatings immediately after manufacturing and work to identify the turbine blades that would last the longest in the airplane,” explained Andrew Moore, leader of the research team. “Ultimately, we want to develop an imaging device that would show the strain distribution in the coating of an entire turbine blade, information that would be used to decide if that turbine blade would go into service.”
Using gigahertz (GHz) illumination was key to the new technique because these wavelengths can travel though some opaque materials, such as ceramics, allowing analysis from within the material. Visible wavelengths, on the other hand, can only be used for surface analysis of opaque materials.
The researchers tested their technique with pieces of metal sprayed with the same ceramic coatings used on Rolls Royce turbine blades. They put the pieces into a tensile machine that applied strain by slowly pulling the metal. Researchers then applied GHz illumination (280-380 GHz) during the process, which travelled through the ceramic coating and bounced off the metal beneath. The reflected light was then measured using a polariscope to determine how the refractive index of the ceramic changed with the applied strain. Although the team's current optical setup only acquires point-based measurements, the researchers say the technique could be used with an imaging setup to analyse an entire blade.
“If we can correlate how the strain distribution is related to the coating's lifetime, then we could determine which coatings will fail first and shouldn't be put into an aircraft and which ones will last much longer,” said Moore. “This would increase the time between services significantly, which would bring huge savings.”
The technique could also be used to predict the lifetimes of coatings developed to be more reliable or tolerate higher temperatures, which allows engines to run more efficiently. It might also find use in automotive and nuclear power applications where ceramics are also used as thermal barriers.
The researchers recently started experimenting with using higher frequency illumination in the terahertz (THz) range, which could improve the technique's spatial resolution. In collaboration with Cranfield University, UK, they are also using their technique to make strain measurements of ceramic-coated metal samples that undergo accelerated aging.