“When we initially got our first Fortus 900mc 3D Printer, we did a lot of prototyping, models and mock-ups. Then it involved into a more of a tooling usage, where the factory production engineers and technicians are actually using the tools to build the rocket parts…we’ve been able to print over 300 production tools that have made our launch vehicle production operations more efficient,” said Greg Arend, Additive Manufacturing Development Leader, United Launch Alliance.
ULA continues to lead the way in widespread adoption of 3D printing throughout their manufacturing process and on their current and future launch vehicles.
“Recently, additive manufacturing has allowed us to redesign propulsion components. Taking advantage of the open design box of additive manufacturing, we were able to come up with a part that was cheaper, lighter and actually performed better than the original part,” explained Matthew Perry, Composite Design Engineer, ULA.
“Stratasys has been invaluable to us from a material development process. It’s provided us with new options we didn’t have before for part design and very unique circumstances, so things like ESD capabilities, conductivity in plastics, and high aero-thermal performance,” said Perry.
With the growing ability of 3D printing to bring significant advantages to the space industry through cost-effective, low-volume production, and lighter, more complex parts, we’ll certainly continue to see more 3D printing firsts in space. And Stratasys will continue to lead the way in supporting the space industry in its most innovative pursuits – with an eye to the future and a meaningful industrial impact today.